2022-07-29T12:55:04+10:00 2022-07-29T12:55:04+10:00

ВТБ применил машинное обучение при кредитовании застройщиков в 30 городах

фото KONKURENT |  ВТБ применил машинное обучение при кредитовании застройщиков в 30 городах
фото KONKURENT

ВТБ завершил пилотный проект по использованию инструментов машинного обучения. Технология поможет банку эффективнее оценивать стоимость строящихся объектов и в ускоренном режиме принимать решения по выдаче кредитов на жилищное строительство. Новый сервис протестирован в 30 городах России.

В основе сервиса – универсальная платформа геоаналитики, запущенная ВТБ в 2020 г. и позволяющая сопоставлять 170 слоев обезличенных данных из банковской сферы, телекома и digital-сервисов. В решении используется обезличенная информация о жителях аналогичных домов, а также районов со схожей транспортной инфраструктурой, имеющих похожие интересы, структуру доходов и расходов и т. д. Уникальный периметр данных анализируется методами машинного обучения для построения сложных нелинейных моделей оценки стоимости объектов. Все это позволяет оперативно принимать решения о выдаче банком кредитов под строительство.

При стандартном методе аналитики для принятия решения в ручном режиме сравнивают территориально близкие объекты. Модели, основанные на Big Data, позволяют оперативно получать качественную аналитику на базе гораздо большего объема разнообразной информации. Наиболее значимые конкурентные преимущества сервис дает в ситуации, когда строящийся жилой объект не имеет рядом аналогов, и оценить его, используя только метод сравнения с похожими соседствующими объектами, невозможно.

«При разработке сервиса мы столкнулись с тем, что рынок жилой недвижимости имеет очень динамичный характер. Для того чтобы «успеть» за рынком в таком широком географическом периметре, мы разработали не просто модели машинного обучения, а Geo AutoML сервис. Он позволяет перестраивать модели в полностью автоматическом режиме. На сегодняшний день AutoML-решений на рынке много, но это первая история с применением геоаналитики. Поэтому сервис можно считать уникальным», – комментирует Максим Коновалихин, руководитель департамента анализа данных и моделирования – старший вице-президент ВТБ.

«Оценка рыночной стоимости строящейся недвижимости играет для банка важную роль в принятии решения о финансировании. Новая разработка позволяет нам повысить оперативность на этом этапе работы с проектом и получить более объективные и точные данные. Мы видим позитивные результаты с точки зрения повышения эффективности оценки проектов в рамках пилотирования сервиса и планируем до конца сентября масштабировать его на большинство крупнейших городов страны», – отметил Руслан Еременко, руководитель департамента регионального корпоративного бизнеса – старший вице-президент ВТБ.

Пока решение применяется только внутри банка, но в дальнейшем может стать доступным и сторонним пользователям – другим банкам и застройщикам жилой недвижимости.

Читайте Konkurent.ru в
Яндекс Новости - KONKURENT.RU Google Новости - KONKURENT.RU
Самые свежие материалы от KONKURENT.RU - с прямой доставкой в Telegram
НОВОСТИ ПАРТНЕРОВ